Exercise 2.4.4

Use linear stability analysis to classify the fixed points of the following systems. If linear stability analysis fails because $f'(x^*) = 0$, use a graphical argument to decide the stability.

$$\dot{x} = x^2(6-x)$$

Solution

The fixed points occur where $\dot{x} = 0$.

$$x^{*2}(6 - x^*) = 0$$

 $x^{*2} = 0$ or $6 - x^* = 0$
 $x^* = 0$ or $x^* = 6$

Use linear stability analysis to classify these points.

$$f(x) = x^2(6 - x)$$
$$= 6x^2 - x^3$$

Differentiate f(x).

$$f'(x) = 12x - 3x^2$$

As a result,

$$f'(0) = 0$$
 \Rightarrow No conclusion can be made about the stability of $x^* = 0$.
 $f'(6) = -36 < 0$ \Rightarrow $x^* = 6$ is a stable fixed point.

The graph of \dot{x} versus x below shows that $x^* = 0$ is in fact a half-stable point and that the second result is true.

