Exercise 2.4.4

Use linear stability analysis to classify the fixed points of the following systems. If linear stability analysis fails because $f^{\prime}\left(x^{*}\right)=0$, use a graphical argument to decide the stability.

$$
\dot{x}=x^{2}(6-x)
$$

Solution

The fixed points occur where $\dot{x}=0$.

$$
\begin{gathered}
x^{* 2}\left(6-x^{*}\right)=0 \\
x^{* 2}=0 \quad \text { or } \quad 6-x^{*}=0 \\
x^{*}=0 \quad \text { or } \quad x^{*}=6
\end{gathered}
$$

Use linear stability analysis to classify these points.

$$
\begin{aligned}
f(x) & =x^{2}(6-x) \\
& =6 x^{2}-x^{3}
\end{aligned}
$$

Differentiate $f(x)$.

$$
f^{\prime}(x)=12 x-3 x^{2}
$$

As a result,

$$
\begin{array}{ll}
f^{\prime}(0)=0 & \Rightarrow \quad \text { No conclusion can be made about the stability of } x^{*}=0 . \\
f^{\prime}(6)=-36<0 & \Rightarrow \quad x^{*}=6 \text { is a stable fixed point. }
\end{array}
$$

The graph of \dot{x} versus x below shows that $x^{*}=0$ is in fact a half-stable point and that the second result is true.

